
Automatic Recirculation Valves

Centrifugal Pumps Require Protection

If you use centrifugal pumps for any liquid-boiler feed water, condensate, or process fluids, a significant investment has been made in the pump, driver and related controls. Minimum flow protection is vital upon pump start up and low demand conditions. If reliable protection does not exist, the following unfavorable effects can interfere with the performance and reliable operation of the pump.

The liquid's temperature will rise due to friction and hydraulic losses within the pump. **Figure 2a** illustrates the temperature rise in relationship to the H-Q curve. The curve indicates that at or near the best efficiency point, the temperature rise is minimal and not significant to the pump operation. The

process flow removes the generated heat from the pump. The temperature increases as the flow through the pump is reduced. Frictional and hydraulic losses generate heat, while the quantity of fluid to which this heat is transmitted is reduced. The rise in temperature results in the formation of vapor. The elevated temperature / vapor pressure of the liquid results in problems ranging from damaged seals and bearings to complete failure of the rotating element.

Internal recirculation within the pump, often termed incipient recirculation, can cause a form of cavitation leading to impeller damage. Internal recirculation is illustrated in **Figures 2b and 2c**.

High specific speed pumps have power curves which rise as the flow reduces. If adequate flow is not maintained, motor overload will result.

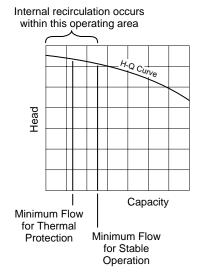
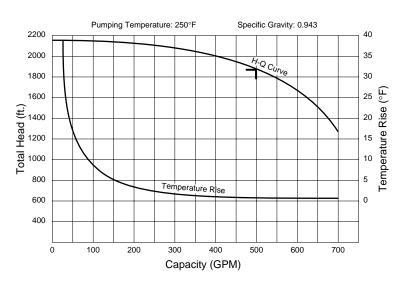
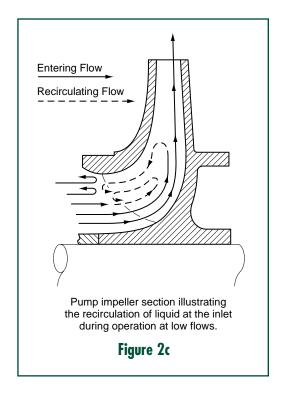




Figure 2b

Typical characteristic curve of a multistage centrifugal pump illustrating temperature rise versus capacity.

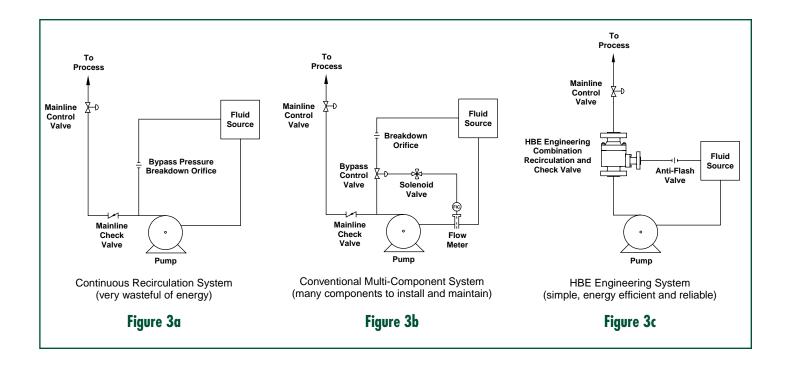
Figure 2a

Minimum Flow Protection Methods

Centrifugal pumps can be protected by one of three methods:

Continuous Recirculating System

The desired minimum flow volume is recirculated regardless of the system demand for fluid. Fixed orifices reduce the pressure before discharging. Continuous recirculating provides reliable pump protection, however, it is very inefficient and costly. The pump and driver must be sized to allow for the additional flow that is recirculating even when the flow demand rate exceeds the required minimum flow. See


Figure 3a.

Instrument Controlled System

Recirculating occurs only when the process flow demand drops below the required minimum flow rate. Instrument controlled systems eliminate the inefficient and costly to operate constant recirculating systems. However, the necessary system components; check valve, flow meter, pressure reducing valve and related piping result in a considerable expense to purchase, install and maintain. See Figure 3b.

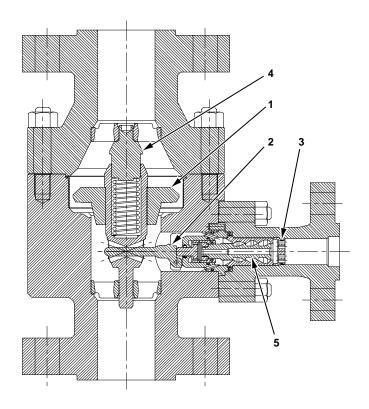
HBE Automatic Recirculating Valves

The automatic recirculating valve performs all flow sensing, bypass pressure reduction, reverse flow protection and modulating recirculating flow in an integral three port valve. The valve performs the same function of an instrumented system without the multitude of components, piping connections and system design expense. The valve is flow operated and does not require any air or electricity to operate. See **Figure 3c**.

HBE HPM Automatic Recirculation Valve ASME Class 600-2500

Introduction

The HPM Series Automatic
Recirculation Valve was developed for
high pressure centrifugal pump
protection. Popular applications include
boiler feed water, petroleum fluids, and
steel mill hot strip descale water.

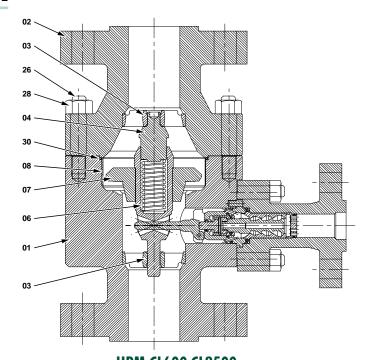

The HPM provides economical and reliable protection against low and reverse flow. By combining the functions of main line check valve, flow sensing element, bypass flow control, bypass

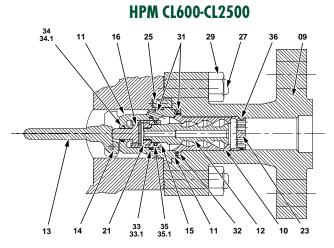
pressure reduction, pulsation dampener and bypass line check valve, the valve eliminates at least seven components necessary with a conventional system. The valve operates without air or electric power and is easily installed with three connections.

Principle of Operation

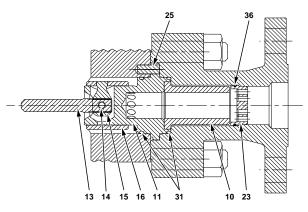
The valve is installed on or close to the pump discharge, just as an ordinary check valve would be. Upon pump startup and without process demand, the bypass is completely open, recirculating the necessary minimum flow. Once process demand starts, the spring loaded disc is lifted and held in position by flow demand. Until main flow demand exceeds recommended minimum flow, the valve will modulate. As the main flow demand increases beyond recommended minimum flow, the bypass will close and all flow will go to the process.

One Valve—Many Functions

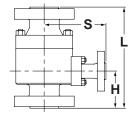

The HPM Series Automatic Recirculation Valve is the one valve that provides at least five essential functions. Following are those functions:


- Check Valve Disc prevents reverse flow and positions the bypass for open, closed or modulating flow by detecting the process flow demand.
- Bypass modulates open when main flow demand falls below the recommended minimum pump flow. Multiple stage pressure reduction prevents flashing/cavitation.
- 3. **Flow Straightener** eliminates turbulent discharge. Fluid exits valve as a spray rather than a jet. Reduces erosive wear on downstream piping.
- Integral Pulsation Dampener protects system from waterhammer if sudden changes in flow demand occur.
- 5. **Integral Check Valve** in bypass prevents reverse flow when bypass is routed into a common return line.

Materials of Construction


Pos.	Description	Material	Specification				
01	Lower Body	Г	A105 Carbon Steel	ASME A 105			
02	Upper Body		A105 Carbon Steel	ASME A 105			
03	Valve Stem Guide		A105 Carbon Steel	ASME A 105			
04	Guide Bolt		416 Stainless Steel	ASTM A 582			
06	Spring		302 Stainless Steel	AISI 302			
07	Check Valve		416 Stainless Steel	ASTM A 582			
08	Liner		304 Stainless Steel	ASTM A 276			
09	Bypass Branch		A105 Carbon Steel	ASME A 105			
10	Vortex Housing		416 Stainless Steel	ASTM A 582			
11	Control Head		416 Stainless Steel	ASTM A 582			
12	Vortex Plug		431 Stainless Steel	MIL-S-18732D			
13	Lever		431 Stainless Steel	MIL-S-18732D			
14	Pivot Pin		316 Stainless Steel	AISI 316			
15	Vortex Bushing		431 Stainless Steel	MIL-S-18732D			
16	Piston		431 Stainless Steel	MIL-S-18732D			
21	Vortex Plate		416 Stainless Steel	ASTM A 582			
23	Flow Straightener		431 Stainless Steel	MIL-S-18732D			
25	Guide Pin		316 Stainless Steel	AISI 316			
26	Stud		A193-B7 Steel	ASTM A 193-B7			
27	Stud		A193-B7 Steel	ASTM A 193-B7			
28	Hex Nut		A194-2H Steel	ASTM A 194-2H			
29	Hex Nut		A194-2H Steel	ASTM A 194-2H			
30	O-Ring		+				
31	O-Ring		+				
32	O-Ring		+				
33	O-Ring		+				
33.1	Glyd-Ring		Filled PTFE				
34	O-Ring		+				
34.1	Glyd-Ring		Filled PTFE				
35	O-Ring		+				
35.1	Glyd-Ring		Filled PTFE				
36	O-Ring		+				
>>>	Recommended spa	re	parts.				
	Provided as "compl						
	+ Application Deper						
	For other body mate						
	HBE with your servi						

Pos.	Description		Material	Specification			
10	Bypass Bushing		416 Stainless Steel	ASTM A582			
11	Control Head		416 Stainless Steel	ASTM A582			
13	Lever		416 Stainless Steel	ASTM A582			
14	Pivot Pin Crank Arm		316 Stainless Steel	AISI 316			
15			416 Stainless Steel	ASTM A582			
16	Control Brushing		416 Stainless Steel	ASTM A582			
23	Flow Straightener		431 Stainless Steel	MIL-S-18732D			
25	Guide Pin		316 Stainless Steel	AISI 316			
27	Stud		A193-B7 Steel	ASTM A-193-B7			
29	Hex Nut		A194-2H Steel	ASTM A-194-2H			
30	O-Ring		+				
31	O-Ring		+				
36	O-Ring		+				
>>>	Recommended sp	are	parts.				
Provided as "complete bypass assembly".							
+ Application Dependent							



HPM CL600-CL2500 Bypass Detail

LPM CL150-CL300 Bypass Detail

Dimensions, Weights and Flow Ratings

Valve Size		Max. Main Flow		Max. Bypass Flow		Bypass	Weight		Dimensions						
Main	Bypass	ASME	GPM	M³h	GPM	M³h	Max. Cv	Lbs.	Kg.	L (in)	L (mm)	H (in)	H (mm)	S (in)	S (mm)
1-1/2	1	150 300 600 900 1500	150	34	60	14	2.9 2.9 1.3 1.1 0.9	42 70 70 70 70 95	17 32 32 32 32 43	7-7/8 10-1/4 10-1/4 11-13/16 12-3/16	200 260 260 300 310	2-5/16 3-9/16 3-9/16 4-516 4-3/4	75 90 90 110 120	6-1/8 7-1/2 7-1/2 7-7/8 8-7/16	155 190 190 200 215
2	1	150 300 600 900 1500	220	50	60	14	3.7 3.7 2.7 1.7 1.6	59 90 106 106 130	27 41 48 48 59	9-1/16 11-13/16 11-13/16 13-3/8 13-3/4	230 300 300 340 350	3-9/16 4-1/2 4-5/16 5-1/8 5-1/8	90 115 110 130 130	6-7/16 7-5/16 7-5/8 8 9-3/16	163 185 193 203 233
2-1/2	1-1/2	150 300 600 900 1500	330	75	150	34	6.8 6.8 3.5 2.6 2.4	92 132 152 152 196	41 59 68 68 88	11-7/16 13-3/8 13-3/8 14-15/16 15-3/4	290 340 340 380 400	4-5/16 4-15/16 4-15/16 5-1/2 5-11/16	110 125 125 140 145	6-7/8 7-13/16 8-11/16 9-1/16 9-13/16	174 199 220 230 250
3	1-1/2	150 300 600 900 1500	500	114	150	34	10.1 10.1 5.2 4 3.5	114 163 185 185 268	51 73 83 83 121	12-3/16 14-15/16 14-15/16 16-1/8 17-11/16	310 380 380 410 450	4-1/2 5-1/2 5-1/2 5-7/8 6-1/2	115 140 140 150 165	7-13/16 8-11/16 9-7/16 9-13/16 10-13/16	200 220 240 250 275
4	2	150 300 600 900 1500	900	204	250	57	12.3 12.3 8.5 5.6 5.2	178 246 277 277 431	80 111 125 125 200	13-3/4 16-15/16 16-15/16 17-11/16 20-1/2	350 430 430 450 520	4-15/16 6-1/8 6-1/8 6-5/16 7-1/2	125 155 155 160 190	8-5/16 9-7/16 10-1/2 11 11-13/16	211 240 266 280 300
5	2-1/2	150 300 600 900 1500	1100	250	400	91	21.7 21.7 11 9.5 6.5	268 400 455 455 638	121 180 205 205 287	15-3/4 19-11/16 19-11/16 20-11/16 25-9/16	400 500 500 525 650	5-5/16 6-7/8 6-7/8 7-5/16 9-1/4	135 175 175 185 235	10-1/2 11-7/16 12-3/16 12-3/16 13-7/16	266 290 310 310 341
6	3	150 300 600 900 1500	2000	454	550	125	31 31 14 12 10	398 601 636 636 977	179 270 286 286 440	18-7/8 21-5/8 21-5/8 21-5/8 23-1/16 27-9/16	480 550 550 585 700	6-1/2 7-1/2 7-1/2 7-7/8 9-13/16	165 190 190 200 250	12-1/2 12-5/8 13-3/16 13-3/4 15-15/16	318 320 335 350 405
8	4	150 300 600 900 1500	3300	749	900	204	51 51 22 20 16	774 1027 1102 1102 1727	348 462 496 496 783	23-5/8 25-9/16 25-9/16 26-9/16 33-7/16	600 650 650 675 850	7-7/8 8-7/16 8-7/16 8-7/8 11-5/8	200 215 215 225 295	15 15-13/16 15-15/16 15-15/16 18-11/16	381 402 405 405 475
10	6	150 300 600 900 1500	4400	999	1230	279	86 86 35 25 22	1355 1571 1813 1885 2825	615 712 822 855 1281	28-3/4 30-1/2 31-1/2 31-1/2 38-3/8	730 775 800 800 975	9-7/16 10-1/4 10-5/8 10-5/8 13	240 260 270 270 330	19-1/2 20-1/4 20-1/2 20-1/2 22-7/16	495 515 520 520 568
12	6	150 300 600 900 1500	6600	1498	1900	431	116 116 55 35 30	2825 3265 3771 3920 5876	1281 1481 1710 1778 2665	33-7/16 35-1/2 41-3/8 41-3/8 45-1/4	850 902 1051 1051 1149	11 11-13/16 14-3/16 14-13/16 15-3/4	280 300 360 360 400	20-7/8 21-11/16 25-9/16 25-9/16 27-9/16	530 551 649 649 700

Flow ratings are based on 60° F water with specific gravity of 1. Contact HBE for CL2500 valve data and applications with flows higher than 12" rating. Dimensions \pm 1/8". Dimensions are the same for Flanged and BWE.


Start Up Internals

One of the most common means of valve damage is start up debris. Regardless of how clean the system is, weld pearls, wear ring particles and other items seem to end up inside control valve internals and damage seating surfaces enough to cause premature leakage.

Take the risk out of start up operations by using start up bypass internals. These factory installed internals take the place of the standard operating internals and provide continuous flow during start up and flush out any debris.

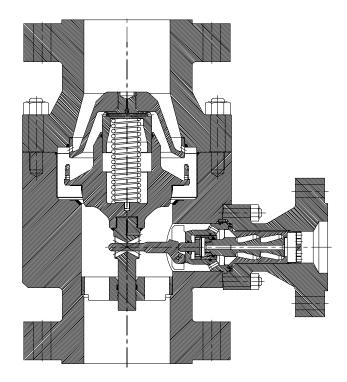
The internals are field adjustable if flow changes are required.

After completion of start up the internals are easily removed and replaced with operating internals.

Pump Run Out Protection

Normally pump protection valves are limited to minimum flow protection; however, severe damage can occur to the pump and driver by exceeding the intended operating range of the pump.

Damage due to excessive flow can be eliminated by designing a "Maxi-Flow" as an addition to the standard minimum flow valve.


Excessive flow protection is achieved by installing an insert with a row of orifice holes into the main valve body. During normal main flow operation the fluid passes through the holes with a minimal pressure head loss. In addition a special disc is provided which has a sleeve around the diameter with a row of orifice holes.

The disc is at full lift when the forward

flow reaches the maximum desired flow rate. At full lift the orifice holes in the

body insert and disc line up stopping additional flow.

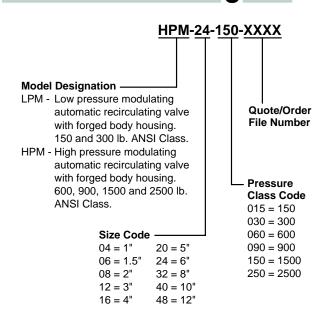
Maximum flow protection prevents exceeding the steam drum desired water level if the drum level control valve failed open in boiler feed service. For process fluids and sea water in which pipe corrosion is a concern the maximum flow protection provides run out protection if piping leaks occur from corrosion.

Run Out Protection Detail

How to Order and Specify

The centrifugal pump shall be protected by the HPM Model automatic recirculation valve which is completely selfcontained and fully automatic via flow activation.

The valve protects the pump from reverse flow and prevents overheating during low process demands.


Operation of the valve bypass will be modulating so the sum of the main and bypass flow will never be less than the minimum flow requirement of the pump. Valve design will incorporate a radial split body spring assisted check valve disc and multi-stage vortex plug bypass assembly. Materials of construction will consist of a A-105 forged carbon steel body housing with stainless steel internals. If service conditions dictate other materials are available such as stainless steel, low temperature steel and other alloys.

The valve will be designed to operate without flashing or cavitation occurring during bypass operation. Any necessary accessories such as orifices or anti-flash valves will be provided by HBE to prevent flashing or cavitation in the bypass piping.

Required Application Data

Main Flow Minimum GPM (m³/hr) Maximum ____ GPM (m³/hr) Normal ___ GPM (m³/hr) Minimum Pump Flow ___ GPM (m³/hr) **Pump Discharger Pressure @** Normal Flow ____ PSIG (kpa) PSIG (kpa) Bypass flow PSIG (kpa) Shut off Bypass Backpressure PSIG (kpa) **Temperature** Normal $^{\circ}F(^{\circ}C)$ °F(°C) Maximum Liquid * Specific Gravity * Vapor Pressure ____ psia * Viscosity centipoise (* if other than water)

Valve Model Legend

The example translated is an HPM model, 6" - CL1500 flanged valve with an HBE file locator number. A written description of the material of construction and end connections follows this model number.

205 Portage Avenue, Three Rivers, MI 49093 USA Phone: 616-279-2035 Fax: 616-278-6745